

Lean Six Sigma Gold

Urgent Support:
A Reduction in Urgent Customer Requests Resolution Cycle Time

Charles Hollingsworth
November 2006

Abstract
This is a documentation of the application of Lean and Six Sigma methodologies to the specific process of receiving
customer requests and resolving the request. Specifically, the customer requests are software support tickets for
online ecommerce applications. The organization is a software development company which exclusively develops
the software that is being supported by their Customer Services department. This project to reduce cycle time for
requests follows the DMAIC process while iteratively applying Lean methodologies within the DMAIC steps to
identify constraints and define the appropriate problems to solve. Finally, suggestions are made to control the
process in the future and establish requirements for a decision support system to monitor the variation.

I have structured this document according to the DMAIC process to narrate project evolution.

Contents

PROJECT FLOW .. 3

DEFINE ... 3

d1. Pre-Kaizen ... 4

d2. Charter .. 5

d3. Scope ... 5

MEASURE .. 7

m1. SIPOC .. 7

m2. Urgent Tickets per Week ... 8

m3. Minutes Per Ticket per Category ... 9

m4. Tickets per Category .. 9

ANALYZE .. 10

a1. Urgent Tickets per Category ... 11

a2. Urgent Tickets per Category ... 11

a3. Urgent Tickets per Week (spikes) ... 12

a4. Factor Analysis of ticket characteristics .. 12

a5. Regression Analysis Ticket Updates on Minutes Tickets Remained Open .. 13

a6. Process Flow Map ... 14

IMPROVE ... 15

i1. Reducing Tickets per Category (eliminating defects) ... 15

i2. Reducing Tickets per Category (increasing responsiveness) ... 17

i3. Process Flow Map Improvement ... 18

CONTROL ... 18

c1. Control Chart ... 19

CONCLUSION ... 20

PROJECT FLOW

As with most Lean Six Sigma projects, this specific project was an iterative process. I will explain the final DMAIC
sections as they pertain to the eventual value of the project. Firstly, I want to establish a ground work for
appreciating the amount of iterative questioning of myself and all those involved in the project, not only for
assembling information for the various tools used in the process of accomplishing the objective, but for defining
the objective itself.

This diagram is intended to track the cycles of the process. Each color represents a cycle. As the project was finally
defined, the iteration continued as new information was discovered during subsequent phases. Lean
methodologies were applied throughout, but it drawn here to also express the impact on the DMAIC process.

DEFINE

More appropriately, pre-define, began with an elevator speech to the CFO of the organization. She was interested
in Six Sigma and asked me to think of some way to apply the techniques in the organization.

Shortly after, I approached her with an idea to evaluate how we were handling customer support requests in the
Client Services department. I knew that any self-initiated effort to improve customer support would be an easy sell
as the organization was “suffering” from significant growth in customers over the previous eight months and
increasing complexities among the software applications being built and deployed to customers. To combat the
significant rise in customer support tickets, the support staff tripled. Still, the perceived support was actually
reducing as investment in the function was dramatically increasing. Obviously, there was a disconnect
somewhere…

Define

Measure

Analyze

Improve

Control

LEAN

After I received support from the CFO, I met with the Project manager and Director of Engineering to let them
know upon what I was embarking. Although my efforts were not going to impact my schedule, I knew that there
may be some impact to others that I would be engaging in my effort. I received full support from all parties to
adjust our schedule as needed. The primary contact, the Client Services manager, was the most important
resource to convince. He is an expert with our entire product line and has been working in software support for
over three years. Fortunately, he is not territorial and was committed to helping with anything that I needed.

We began with an initial pre-Kaizen event in which we tried to hone in on our goal for the project. We both agreed
that “make things better” was a little too broad, but at least that proved that everyone was willing to work. Our
initial pre-Kaizen ended with the following guidelines:

d1. Pre-Kaizen

PRE-KAIZEN

Title Fast resolution of production software support issues.

Purpose Reduce Cycle Time for Customer Production Software Errors.

Business Need Addressed Customers consistently complain that we are not responding quickly to
production defects. Specifically, they complain that these defects directly
impact their ability to generate revenue each minute that they encounter the
errors. Addressing this constant direct contact that we have with the
customers can be an opportunity to create a positive interaction and
eventually a competitive advantage. A 10 time reduction in cycle time for
customer issues is our goal.

Problem Calculate current times to resolve issues

Scope Improve relationship with customers and proactively improve the software
quality perception of all stakeholders by identifying the “bang for the buck”
problems that are the most valuable to the customer.

After we framed the project, we assembled those who would be the best representatives to include in a Kaizen
event. This was important for several reasons. I needed to show that we were committed to improving the
situation and we needed to express to these key people that we would need their help in selling any changes that
we would need to make. Especially any that would directly impact customers. In addition to ourselves, we decided
to include other software support reps, account executives, and a couple of software developers. This would give
us functional coverage to include

 Front-line support (support reps)

 Customer expectation management (account executives)

 Back end higher tier support (developers)

As we discussed the efforts, we started to extract the issues that everyone perceived as the current problems with
supporting our customers. What began to surface was interesting. Although anytime we miss customer
expectation is an opportunity for improvement, it became obvious that the biggest decrease in customer
satisfaction came from handling urgent software requests. We defined these as requests which involved all or part
of the software being “down.” Since these are ecommerce sites, the perception is that any time offline directly
impacts revenue. Obviously, this significantly impacts customer perception. In addition, these urgent requests are
the biggest disruption to support reps, account execs, and developers. Since, in each case the employee has to
completely drop what they are doing and respond to the situation. The practical impact is even greater in that all
three stay distracted for the duration of the resolution as everyone “jumps in” and stays involved “‘til the bitter
end.” Consequently, we amended the Charter to focus on Urgent requests (shown in red).

d2. Charter

CHARTER

Title Fast resolution of Urgent production software support issues.

Purpose Reduce Cycle Time and eliminate frequency of Urgent Customer Production
Software Errors.

Business Need Addressed Customers consistently complain that we are not responding quickly to
production defects. Specifically, they complain that these defects directly
impact their ability to generate revenue each minute that they encounter the
errors. Addressing this constant direct contact that we have with the
customers can be an opportunity to create a positive interaction and
eventually a competitive advantage. A 10 time reduction in cycle time for
customer issues is our goal. Also, we need to eliminate 50% of the urgent
production support issues.

Problem Calculate current times to resolve issues

Scope Improve relationship with customers and proactively improve the software
quality perception of all stakeholders by identifying the “bang for the buck”
problems that are the most valuable to the customer.

Roles and Responsibilities Stakeholders: Software Support, QA, Development, Account Management, IT
Sponsors: George Chapman, Director of Engineering
Team Members: Brian Glover, Manager of Software Support
Black Belt Candidate: Charles Hollingsworth

Resources (non-human) Task Support Database

MILESTONES/MEASURES Project start date: 9/1/06
Planned project completion date: 11/30/06

How will we know if we are
successful? What are the
measurable benefits the project is
targeted to deliver?

 Decreased cycle times from ticket open to resolution.
 Increased customer satisfaction during status meetings with Account

Executives
 Decreased interruption in development and QA which negatively

impacts scheduled software releases
 Important:
 Set expectations with customer
 Meet those every time for critical issues
 On call Developer?
 Stakeholder Analysis

d3. Scope

SCOPE Measure

Problem
 During the third quarter of 2006, we lost

customers to a competing software platform
and another high profile client has demanded
that we devote full-time resources to their
support issues and scalability testing. Since the
competing platform is essentially equal
regarding product line and costs, a significant
component in their decision to move is software

Customer
Requirements

Measure

Fast Resolution to
Urgent Ticket

Throughput Time

support and scalability. Considering only the
contracts that have already been lost, the
monthly revenue loss is approximately $80,000
dollars. The loss of just one “Tier 1” customer
would cost approximately $5,000,000 per year in
revenue.

Goal
 Reduce cycle time on software support issues to

under an hour.
 Eliminate defects that need to have to be

addressed in the first place!

COPQ
 Perceived software quality. Many of the support

issues are not bugs in our software, but rather
hardware/platform (Windows 2000/2003, IIS,
SQL Server) malfunctions; however, given our
relatively unsophisticated customer
base…everything is OUR fault!

 Direct costs are lost customers and any
downtime in customer’s software resulting in a
reduction in our maintenance fees and rebates
to the customer (add metric here).

VOC
 We will be using software support issues from

our call support database which contains
detailed complaints with time stamped ticket
initiation and documentation explaining each
step in the resolution process. We will also
gather direct candid feedback from account
managers which are effectively brokers which
represent all of our customers. “They want to
know progress,” but “IT ALL BOILS DOWN TO
WAIT TIME.”

Want to know progress
at every stage

Ticket Update
Frequency

Furthermore, this seemed to make sense considering Six Sigma and variation. The specific “variation” caused by
unexpected urgent situations essentially impacted several other resources and schedules from four departments.
This does not even consider the expense associated with rework and retesting.

MEASURE

m1. SIPOC

The first step in mapping our process required a SIPOC analysis. An interesting characteristic of the SIPOC is that

the primary suppliers (Casino Manager, Account Manager) are also the customers of this process. This is

understandable given that these groups create the support tickets and are consequently delivered a solution

represented by a resolved support ticket.

To perform the measure phase, I had to get my hands on data. Fortunately, I had access to our task support
database. Unfortunately, the items in the database were not explicitly categorized. For instance, the tickets were
not tagged as “Urgent” and were not classified by type or application. So, I tested many techniques (time open,
string matching for urgent keywords, etc.) for writing SQL queries to filter and scrub the support database to focus
on tickets involving urgent requests.

Painstakingly, I reviewed a thousand tickets and manually assigned categories to the tickets.

 progressives

 cashier

 casino client/art change

 credit system

 processor setup

 CD create

 processing transactions

 admin access

 coupon

 admin education

Staff Availability

Development
Team/QA

Team

SW/HW
MonitoringIT

Account
Manager

Update
KnowledgebaseResolve TicketKnowledgebase

Account
Manager

Casino
Manager

Operational
Casino

Client Support
Evaluation

Casino
Manager

Problem Ticket

CustomersOutputsProcessInputsSuppliers

Read Ticket
Replicate

in Production

Replicate

on Site

Fix

Issue

Notify

Customer

Once I identified the categories for the tickets, I then applied these categories to about 140 tickets that I was able
to classify as urgent. I ran a time series analysis on the tickets to track workload and concurrent outstanding tickets
over the previous months. Shown below are samplings of the measurements.

m2. Urgent Tickets per Week

This is a time series plot for the tickets opened per week. There are some significant spikes in the opened ticket
amount over this six month period.

Subsequently, I graphed the number of tickets per category to get an idea of how the load was distributed and
how long each ticket remained open. Also, I wanted to validate the categories that I had created. As shown in table
m2, some categories that were represented in the original total ticket dataset did not have urgent tickets
attributed to them for more than a six month period.

0

2

4

6

8

10

12

14

16

12 14 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

ti
c
k
e
ts

week 2006

Urgent Tickets Per Week

m3. Minutes per Ticket per Category

In order to get a visual idea of how many tickets were submitted in their respective categories, I charted the tickets
for the nominal amount of tickets that existed in the system. Obviously not all tickets are “created equally”
considering complexity, reproducibility, etc, but with each ticket there are similar overhead costs associated with
the customer entering a ticket and a representative opening and reading and categorizing and reproducing each
ticket no matter the ultimate complexity of the issue. The m3 chart considers all tickets for this observation, since
all tickets submitted impact the quality of service and resolution time for urgent requests.

m4. Tickets per Category

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
in

u
te

s

Category

Minutes Open per Ticket per Category

0
50

100
150
200
250
300

Ti
ck

e
ts

Category

Tickets per Category

After studying our initial data and honing the goal and definition of the project we created SQL reports which
allowed us to instantly produce and instantly reproduce these measurements over any time range. For this project
we continued with our analysis using the six month prior time frame. From a business perspective, we knew that
this particular time frame encompassed many support and product scenarios that would be representative of
worst case scenarios in the future.

ANALYZE

As we set up the Measure reports, instantly, there were obvious improvements to be made. However, I stressed to
those involved that although the measurements pointed out some obvious “low hanging fruit,” we needed to
complete our analysis to prioritize our efforts. Based on other projects I had been involved with in the past, I was
sure that attacking the biggest constraints would dynamically cascade throughout our prioritizations as we
systematically improved our processes.

Building on our charts from the Measure phase and the business expertise on the team, the initial categories
began to congeal into the ultimate set of Consolidated Categories. These are the ticket categories (with their
categorical code) that will be referred to from this point in the document.

 cashier (2)

 casino client/art change/progressives (3)

 processing transactions/setup (6)

 admin access (9)

 coupon (10)

 admin education insufficient report (11)

 admin report bug/creditSystem (12)

 affiliates (13)

 admin performance (14)

 misc/CD/integrations (15)

The Pareto analysis offered here gives a scope of the situation.

a1. Urgent Tickets per Category

Based on the architecture of our applications and the organization of our product features, we were able to further
categorize these consolidated categories so that improvements could be made in an area. This may seem counter
to Lean philosophy at first, but, in fact, the nature of enterprise software applications make it much more efficient
to make code adjustments and add features to one area at one time. To use a mechanical analogy, it is easier to go
ahead and fix several things while you have the engine disassembled. This applies to fixing and adding code as well
as testing the code for QA before deployment. Specifically, the four rightmost categories represent issues relating
to the same software application. Furthermore, the processing and cashier categories involve another logical
function that exist as separate applications but, because of their integration, must be tested by QA and evaluated
by customer support simultaneously.

a2. Urgent Tickets per Category

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

5

10

15

20

25

30

T
ic

k
e
ts

Urgent Tickets per Category

Reviewing the time series plot from the Measure phase exposed an interesting phenomenon. It seems that the
spikes mentioned before correspond directly with the rollout of a new software version. Software upgrades are
performed by our company for each of our customers. These upgrades are done remotely usually within a two
week timeframe.

a3. Urgent Tickets per Week (spikes)

Given the consolidated categories and time series analysis, I wanted to build a model to calculate the relative
impact of ticket submission on ticket resolution times so that wait times could be predicted in the future for
customers based on the classification of the request and the current tickets that were simultaneously under
investigation in the system. I transformed the categorical codes that I designated for each consolidated ticket
category. Using SPSS, I ran a factor analysis on the categories to see if I could further combine any correlated
variables. There were no further statistically significant relationships between the ticket categories that I had
already functionally defined. Furthermore, other than the .69 correlation score for ticketUpdates and minutes,
there were no statistical relationships between

a4. Factor Analysis of ticket characteristics

 Day of week opened

 Week opened

 Minutes opened

 Status

 Category

 Ticket Updates

 *KMO test = .504

This relationship seemed interesting and intuitively accurate. Consequently, this provided a variable which I could
analyze further to see its impact on the time that tickets remained opened. This is not an earth-shattering
discovery; however, we discussed how we could reduce the amount of repeated correspondence with the

0

2

4

6

8

10

12

14

16

12 14 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

ti
c
k
e
ts

week 2006

Urgent Tickets Per Week
software upgrade to customers

customer and among internal resources. The overhead of communication is high within a support group in a
software company given that the ticket is often assigned across department to employees that have another
primary responsibility and do not consider the resolution of the ticket as a priority.

For curiosity sake, I performed a hierarchical cluster analysis and a K-means analysis on these variables but after
removing outliers, the two clusters that were derived did not seem useful to classifying tickets as the best scenario
had one of the two clusters cluster only representing 5% of the population.

 I ran regression observations against many combinations of variables. For example, I created dummy variables for
the ticket categories and ran a regression analysis against the independent variables MinutesOpened, but the
ANOVA proved these variables to have no significant impact.

Then I further scrubbed the data identifying extreme values with an SPSS missing value analysis to only include
tickets that were both critical issues and were closed within one day. The logic behind this scrubbing was that the
tickets that were open for more than a day were not the type of ticket that we were trying to simulate considering
that we were trying to see the impact of ticket updates during the early stages of a tickets life. In a sense, those
observations were outliers relative to the analysis.

a5. Regression Analysis Ticket Updates on Minutes Tickets Remained Open

y = 372.7x - 660.6
R² = 0.605

0

200

400

600

800

1,000

1,200

1,400

1,600

0 1 2 3 4 5 6

M
in

u
te

s
O

p
e

n

Updates To Tickets

Ticket Updates Impact on Minutes Opened

This analysis did render some interesting information. Although this confirmed what we knew intuitively, it further
drove home the fact that we need to solve the problems by getting the right ticket in the hands of the right person,
quickly. The model that represents the impact of multiple updates to tickets is

Minutes Open=372.2 (Number of Updates to Ticket)-660

a6. Process Flow Map

After analyzing the more quantitative side of the process, we moved to the more tangible portion of the analysis.
This was probably the most entertaining as we exposed what we all thought was a pretty straightforward efficient
process!

The swim lanes represent the departments that are touched during the ticket answering process. Obviously, most
tickets do not require this complete flow. I believe this is why we all thought that the process was streamlined.
However, an urgent ticket of any complexity could very likely follow this entire flow. In fact, we used a recent

Urgent Support Ticket Resolution

Q
ua

lity

As
su

ra
nc

e
De

ve
lo

pm
en

t
Cu

st
om

er

Su
pp

or
t

Cu
st

om
er

 E
xit

Cu
st

om
er

Su
pp

or
t

Error occurs

Casino Enters

Ticket

Cust Support

Receives auto-

email

Cust

Support

attempts to

resolve

Ask Cust

Support

Manager for

help

no

Cust

Support

Resolves

yes

yes

Email to QA

group*

no NOT CLEAR

Product

Management

QA

attempts to

replicate

problem

yesno

Dev Manager

Evaluates for

best resource

Developer

resolves

Update Ticket

System
Apply fix

yes

no

no

Happy

Customer

ticket as an example to validate this flow. The points of communication alone, ignoring the actual solution to the
problem, would cause our process goal to be out of control.

IMPROVE

Taking in all of our findings from the analyze phase, there were some obvious opportunities. Although the

quantitative analysis was certainly Six Sigma methodology, Lean fundamentals seem to be effective in addressing

the problems that were exposed. This can be simply categorized as

1. Reduce tickets that need to be addressed
2. Reducing complexity beforehand to eliminate defects and then reduce complexity in troubleshooting and

solving the defect when it is reported.
3. Giving the customer what they really need to circumvent defects.
4. Put the person who can solve the problem closer to the process.
5. Identify high-risk periods and allocate resources accordingly

Worth noting is that although this list seems vague, everyone involved in the process completely understands what
is meant by even this brief definition. Each improvement category was then addressed by specific improvement
projects that we defined (i1-i3).

i1. Reducing Tickets per Category (eliminating defects)

This is the chart from the analyze phase (a2). Below the chart are the actual projects that we decided would
address the worst categories relative to urgent ticket submission. Also, the improvements listed are easily defined
and implemented. Obviously, iterative analysis will be required as each solution is implemented to then
reprioritize our problem categories, but these are inarguably areas that need addressing and the corresponding
solutions can be developed and implemented independently. The color-coding and line pointers represent the
ticket category that the corresponding improvement is attempting to reduce. The color-coded items are the ticket
elimination projects. They will serve to simply processes, eliminate steps, and provide the customer with real-time
reporting and information to resolve perceived issues that should never even be submitted to our support staff.
The remaining improvements (grey) are projects that will generally reduce the time a ticket remains unresolved.

Eliminate Tickets

 Poke-Yoke Installer

 System Configuration
Tester

 Real-time Payment
Reporting

 Killer Player Ledger
Report

 Developer Assisted Initial Rollouts
 Higher Level Support or On-Call Developer
 Add “category” to Support Tickets
 Automated Problem Type Notification to Best Resource

Poke-Yoke Installer is an automated installation wrapper for the cashier application. There are several tedious
steps when installing this application including linking to external processors, administrative applications and web
site configuration that are easily missed and are eventually the origin of most support tickets involving this
category. Obviously, this is a critical application as this is the interface for players to transfer money into the
casino. I mention poke-yoke because this installer will allow for step-by-step testing of all of the configuration
settings for this system as the support representative is stepping through the install.

System Configuration Tester also relates to the cashier and payment processing function of the software platform.
This would allow the installer and support staffs to test the payment processing process and identify the point in
the transaction process that was failing. Many times the problem is the responsibility of the third party payment
processor. So, time is wasted troubleshooting a problem on our side that is out of our control. The obvious next
step is to coordinate this with the third party to improve their portion of the process.

Real-Time Payment Reporting will proactively enable the customers to see the streaming funds transactions from
their customers as well as failed attempts and reasons for failures. We will then be able to automate the testing so
that customers can test the payment processors themselves thus decreasing this burden on the support staff even
further.

Killer Player Ledger Report is information that the customer has needed for a long time. In reality, they have
access to all of the information in this conceptual report, but it is in five different places in the administration
application. This has been identified as a need for almost a year on our project plan, but we did not know the
impact of the absence of the information on our support staff. The information in this report would allow the
customer to easily identify perceived discrepancies in a players account and track all activity by the player so that
our support staff does not need to manually research this issue by writing SQL code against production databases.
This is an exciting feature in that it will solve so many problems while actually increasing the marketability of our
administration application.

i2. Reducing Tickets per Category (increasing responsiveness)

(from chart i1)

Developer Assisted Initial Rollouts
Higher Level Support or On-Call Developer
Add “category” to Support Tickets
Automated Problem Type Notification to Best Resource

To reduce the responsiveness we have decided to take some other measures. While these are more labor intense
and not as technically exciting as the previous solutions. However, there implementation can happen immediately
and have immediate impact, especially given that the aforementioned ticket elimination projects will take time to
implement. As we identified with the time series chart, our spikes in defect tickets occur during the initial stages of
software “roll-outs” to customers. These steps will serve as a stop-gap in the short-term. As we continuously
improve, we will hopefully make these initiatives obsolete.

Developer Assisted Initial Rollouts is a simple appropriation of resources to the right place at the right time. The
concept is that we will have a developer in the support facility that was responsible for the major features that are
included in the software version release. From our observation, we can see that the early stages are the most
critical. This will only distract the resource for a couple of days, but as we have seen, that resource is distracted
anyway by the defects. The benefit here is two-fold. The response time and resolution will be much shorter as we
eliminate levels of communication. Also, the developer is able to witness the problems of the support staff and
learn new ways of improving or simplifying applications so that applications can be refactored to reduce defects in
the future.

Higher Level Support or On-Call Developer is a related solution that calls for a developer to always be “on-call” for
urgent issues. This will solve the big issue we have with support identifying the correct resource to resolve the
defect. While developers tend to be resistant to support, they are willing to share the responsibility so that more
accurate evaluations of problem can be made immediately and the correct resource identified. In interviewing the
developers, we found that they were primarily frustrated when they investigated a problem for hours just to find
that they were the incorrect resource to resolve the problem.

Add “category” to Support Tickets is a frighteningly simple feature that we will add to the ticket management
system that will be a simple drop list for categorizing tickets as they are created and initially answered. Of course,
we will need to educate customers and support staff to know how to categorize issues correctly, but based on the
categories we have identified in our earlier analysis, the categories are explicit enough to make the ticket
association relatively easy.

Automated Problem Type Notification to Best Resource is the ultimate situation for managing urgent tickets. As
we reduce the amount of urgent defects that occur. I would like for the urgent ticket to be routed directly to the
highest level resource that is responsible for the defect type. In this case, we will take most of the investigative
burden of urgent tickets off the support staff and put them directly on the developer or artist that produced the
defect or has been established as a functional expert.

Critical to all of these improvements is a general effort to educate the customer so that they provide more
information when submitting a ticket. As we develop the ticket categories we will be able to provide some sort of
expert system features that will instruct the customer to provide specific information about the issue they are
submitting.

i3. Process Flow Map Improvement

After analyzing the process flow map, the unnecessary complexities in the process became obvious, especially for
an urgent ticket. A huge improvement that is relatively simple to implement immediately was to add a “decision”
(Urgent?) subsequent to the receipt of the ticket and a corresponding flow (in red) to a higher level resource. This
will be made even simpler when the aforementioned improvements are implemented, tickets are categorized and
higher level resources are assigned to receive these urgent issues.

This will circumvent non-value added steps. These were not obvious until now because these fit into our internal
processes but really do not contribute to customer quality considering urgent requests. These are certainly not
steps for which the customer is willing pay when their entire business is down!

CONTROL

Although our process is far from “in control,“ we thought it was interesting to build an X-bar chart of our initial
situation.

Urgent Support Ticket Resolution

Qu
ali

ty

As
su

ra
nc

e
De

ve
lop

me
nt

Cu
sto

me
r

Su
pp

or
t

Cu
sto

me
r E

xit
Cu

sto
me

r

Su
pp

or
t

Error occurs

Casino Enters

Ticket

Cust Support

Receives auto-

email

Cust

Support

attempts to

resolve

Ask Cust

Support

Manager for

help

no

Cust

Support

Resolves

yes

yes

Email to QA

group*

no NOT CLEAR

Product

Management

QA

attempts to

replicate

problem

yesno

Dev Manager

Evaluates for

best resource

Developer

resolves

Update Ticket

System
Apply fix

yes

no

noUrgent?

Happy

Customer

c1. Control Chart

This chart is not very valuable, but it did provide a prototype for the developers to construct a real-time control
chart in our ticket management system. The initial mean in our process was greater than a day and a half for a
ticket. The samples for the chart were based on ticket category, but we will adjust this to track every individual
urgent ticket when the system is up and running. Needless to say this excited the customer support manager as he
has been managing “by gut” for 3 years.

As we apply these improvements, we are iteratively reconsidering our measures and analysis to see that our
improvements remain relevant and prioritized relative to the goal. We have decided that we must always consider
a few key concepts as we seek to control our process and continually improve.

o Always Look to Eliminate Defect First!
o Admin System Performance more than meets the eye

 Some customers will not commit to adequate platform and will not “allow” us to meet
control limits

 Not worth software re-write
o Customer Tiers  Lower tier = disproportionate urgent requests
o Rollout TimeDeveloper “On Call”
o Keep fine tuning our control tools

These points are critical as we get people excited about the new techniques. The organization has never made an
explicit commitment to support (other than hiring bodies). So, we want to set internal expectations about what we
are actually trying to improve right now. Every person involved has their own opinion on our “real problem,” so if
we are not seen to be addressing their concern immediately then we could be frustrating employees that are
crucial to our long-term success. These points stress that we want to

Eliminate defects first as some employees have made a career of simply fixing things repeatedly to get the
proverbial “pat on the back.”
Admin application performance cannot be “fixed” for customers that are not willing to make an investment in
hardware. We will identify these customers. This is a customer account management issue not a support issue.
Customer Tiers are important for many of the same reasons. The premium customers pay more for premium
support. We strive to meet expectations of all customers, but in the short term this is strategic in meeting our
goals.
Rollout Time means that we need to have a developer dedicated. This is the Support Team’s responsibility to
coordinate with the development group.
Keep giving feedback on our control tools since this is the only way that we have for measuring our progress and
real-time customer satisfaction.

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7 8 9 10

M
in

u
te

s

Sample Observation

X-Bar

X-bar

LCL

center

UCL

Most of all…stay focused on urgent tickets!

Applying these techniques to all tickets will happen naturally. But, everyone needs to measure ourselves by urgent
response. This is what undermines customer satisfaction and directly costs money and impacts revenue.

Given our current situation, the goal of eliminating 50% of the urgent issues seems very feasible. Furthermore, the
90% reduction in cycle time is actually too simple given the horribly long durations we have connected to some
tickets. The team agreed that a better metric will be to keep urgent ticket resolution below one hour. This does not
alter our strategy and it will give everyone involved a more tangible measurement.

CONCLUSION

During this project, we identified other areas to extend the methodologies.

 Process Improvement Cycle
o Prevent Repeated Mistakes
o Stop playing with puzzles

 Application Performance
o Microsoft Laboratory Engagement
o Replicate Urgent Scenarios
o Load Testing Tools
o Six Sigma within the application

 Customer Satisfaction Surveys
o Integrate the customer
o See how we are doing

 Simplify Development Cycle with Scrum and Agile

Obviously, we want to extend the improvement and control techniques to the entire support process
improvement cycle. However, we also want to apply it within the application platform by implementing
continuous application performance improvement. We have already reserved Microsoft Laboratory engagements
for testing as well as building monitoring tools to simulate customer experience in the field so that we know they
are having problems before they submit a ticket, and we can proactive deal with performance tickets as
performance on outdated hardware begins to diminish. Customer Support will request customer feedback in a
formal survey periodically “see how we are doing.” Finally, we want to incorporate Six Sigma and Lean within our
software development process. There are several recent movements in the software industry to combine these
techniques with Agile development. We restrained the urge to broaden our scope during the project and kept
these projects separate.

This project itself provided a good basis for showcasing Lean Six Sigma in the organization. This was a worthwhile
project that all participants were committed to solving from the Finance to the Development department. In this
case, improving external customer service will improve every internal process also and this iterative evolving
learning experience provided a great model going forward.

